Big Data Analytics for BE Anna University R21CBCS (V - AI&DS- CCS334 & Vertical I (Data Science) - CSE / IT / CS&BS - CCS334 & Vertical for AIDS I - AI&DS - CCS334))

Big Data Analytics for BE Anna University R21CBCS (V - AI&DS- CCS334 & Vertical I (Data Science) - CSE / IT / CS&BS - CCS334 & Vertical for AIDS I - AI&DS - CCS334))  (Paperback, I.A. DHOTRE)

Price: Not Available
Currently Unavailable
Author
Read More
Highlights
  • Binding: Paperback
  • Publisher: TECHNICAL PUBLICATIONS, PUNE
  • Genre: EDUCATIONAL
  • ISBN: 9789355854209, 9355854209
  • Edition: FIRST, 2023
  • Pages: 160
Description
Syllabus Big Data Analytics - [CCS334] UNIT I UNDERSTANDING BIG DATA Introduction to big data - convergence of key trends - unstructured data - industry examples of big data - web analytics - big data applications - big data technologies - introduction to Hadoop - open source technologies - cloud and big data - mobile business intelligence - Crowd sourcing analytics - inter and trans firewall analytics. (Chapter - 1) UNIT II NOSQL DATA MANAGEMENT Introduction to NoSQL - aggregate data models - key-value and document data models - relationships - graph databases - schemaless databases - materialized views - distribution models - master-slave replication - consistency - Cassandra - Cassandra data model - Cassandra examples - Cassandra clients (Chapter - 2) UNIT III BASICS OF HADOOP Data format - analyzing data with Hadoop - scaling out - Hadoop streaming - Hadoop pipes - design of Hadoop distributed file system (HDFS) - HDFS concepts - Java interface - data flow - Hadoop I/O - data integrity - compression - serialization - Avro - file-based data structures - Cassandra - Hadoop integration. (Chapter - 3) UNIT IV MAP REDUCE APPLICATIONS MapReduce workflows - unit tests with MRUnit - test data and local tests - anatomy of MapReduce job run - classic Map-reduce - YARN - failures in classic Map-reduce and YARN - job scheduling - shuffle and sort - task execution - MapReduce types - input formats - output formats. (Chapter - 4) UNIT V HADOOP RELATED TOOLS Hbase - data model and implementations - Hbase clients - Hbase examples - praxis. Pig - Grunt - pig data model - Pig Latin - developing and testing Pig Latin scripts. Hive - data types and file formats - HiveQL data definition - HiveQL data manipulation - HiveQL queries. (Chapter - 5)
Read More
Specifications
Book Details
Publication Year
  • 2023
Book Type
  • TEXT BOOK
Number of Pages
  • 160
University Books Details
Stream
  • ENGINEERING
Degree/Diploma
  • DEGREE
Specialization
  • (V - AI&DS- CCS334 & Vertical I (Data Science) - CSE / IT / CS&BS - CCS334 & Vertical for AIDS I - AI&DS - CCS334))
Term
  • SEM V AI&DS, SEM V AI&DS
Additional Features
Age Group
  • 18 TO 60 YEARS
Ratings & Reviews
3.9
8 Ratings &
0 Reviews
  • 5
  • 4
  • 3
  • 2
  • 1
  • 5
  • 0
  • 1
  • 1
  • 1
Have you used this product? Be the first to review!
Be the first to ask about this product
Safe and Secure Payments.Easy returns.100% Authentic products.
You might be interested in
Popular Psychology Books
Min. 50% Off
Shop Now
Language And Linguistic Books
Min. 50% Off
Shop Now
Politics Books
Min. 50% Off
Shop Now
Other Self-Help Books
Min. 50% Off
Shop Now
Back to top