Braids and braid groups, the focus of this text, have been at the heart of important mathematical developments over the last two decades. Their association with permutations has led to their presence in a number of mathematical fields and physics. As central objects in knot theory and 3-dimensional topology, braid groups has led to the creation of a new field called quantum topology. In this well-written presentation, motivated by numerous examples and problems, the authors introduce the basic theory of braid groups, highlighting several definitions that show their equivalence; this is followed by a treatment of the relationship between braids, knots and links. Important results then treat the linearity and orderability of the subject. Relevant additional material is included in five large appendices. Braid Groups will serve graduate students and a number of mathematicians coming from diverse disciplines.
Read More
Specifications
Book Details
Imprint
Springer-Verlag New York Inc.
Dimensions
Height
235 mm
Length
155 mm
Weight
730 gr
Be the first to ask about this product
Safe and Secure Payments.Easy returns.100% Authentic products.