
Data in all domains is getting bigger. How can you work with it efficiently? This book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala.
Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning.
Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell
Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib
Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm
Learn how to deploy interactive, batch, and streaming applications
Connect to data sources including HDFS, Hive, JSON, and S3
Master advanced topics like data partitioning and shared variables
About the Authors
Holden Karau is a software development engineer at Databricks and is active in open source. She is the author of an earlier Spark book. Prior to Databricks she worked on a variety of search and classification problems at Google, Foursquare, and Amazon. She graduated from the University of Waterloo with a Bachelors of Mathematics in Computer Science. Outside of software she enjoys playing with fire, welding, and hula hooping.
Most recently, Andy Konwinski co-founded Databricks. Before that he was a PhD student and then postdoc in the AMPLab at UC Berkeley, focused on large scale distributed computing and cluster scheduling.
He co-created and is a committer on the Apache Mesos project. He also worked with systems engineers and researchers at Google on the design of Omega, their next generation cluster scheduling system. More recently, he developed and led the AMP Camp Big Data Bootcamps and first Spark Summit, and has been contributing to the Spark project.
Patrick Wendell is an engineer at Databricks as well as a Spark Committer and PMC member. In the Spark project, Patrick has acted as release manager for several Spark releases, including Spark 1.0. Patrick also maintains several subsystems of Spark's core engine. Before helping start Databricks, Patrick obtained an M.S. in Computer Science at UC Berkeley. His research focused on low latency scheduling for large scale analytics workloads. He holds a B.S.E in Computer Science from Princeton University
Matei Zaharia is the creator of Apache Spark and CTO at Databricks. He holds a PhD from UC Berkeley, where he started Spark as a research project. He now serves as its Vice President at Apache. Apart from Spark, he has made research and open source contributions to other projects in the cluster computing area, including Apache Hadoop (where he is a committer) and Apache Mesos (which he also helped start at Berkeley).
| Publication Year |
|
| Author |
|
The Best Book For Self Learners
Saravanan Subramanian
Certified Buyer, Chennai
Jan, 2016
Excellent
Flipkart Customer
Certified Buyer, New Delhi
Sep, 2021
Perfect product!
Siddrameshwar
Certified Buyer, Bangalore
Aug, 2020
Useless product
Shailendra Verma
Certified Buyer, Gurugram
Jan, 2020
Best in the market!
Sudarshan INDIA
Certified Buyer, Bangalore
Feb, 2019
Just wow! Nice book
Avinash waghole
Certified Buyer, Pune
Jan, 2019
Worth every penny
Flipkart Customer
Certified Buyer, Gautam Buddha Nagar
May, 2018
Review from Rimondi
Rimondi Ram Muvva
Certified Buyer, Hyderabad
Aug, 2016