Perfect Lattices in Euclidean Spaces

Perfect Lattices in Euclidean Spaces  (English, Paperback, Martinet Jacques)

Price: Not Available
Currently Unavailable
Author
Read More
Highlights
  • Language: English
  • Binding: Paperback
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Genre: Mathematics
  • ISBN: 9783642079214, 9783642079214
  • Pages: 526
Description
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.
Read More
Specifications
Book Details
Imprint
  • Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Dimensions
Height
  • 235 mm
Length
  • 155 mm
Weight
  • 837 gr
Be the first to ask about this product
Safe and Secure Payments.Easy returns.100% Authentic products.
You might be interested in
Psychology Books
Min. 50% Off
Shop Now
Other Lifestyle Books
Min. 50% Off
Shop Now
Language And Linguistic Books
Min. 50% Off
Shop Now
Economics Books
Min. 50% Off
Shop Now
Back to top