The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r *. . . * rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . * [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r? J J J J J where Aj is a square matrix of size nj x n* say. B and C are j j j matrices of sizes n. x m and m x n . * respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity.
Read More
Specifications
Book Details
Imprint
Birkhauser Verlag AG
Dimensions
Height
244 mm
Length
170 mm
Weight
728 gr
Be the first to ask about this product
Safe and Secure Payments.Easy returns.100% Authentic products.